1.3. Module/ course form

	Module name	e :					Mod	dule code: M9	
	DATABASES								
Team	Course name	: :					Cou	rse code:	
Te	Databases								
se	Faculty:								
Course	The Institut	e of Applied	Info	rmatics					
	Field of study	y:							
by	Informatics								
ed	Mode of stud	ly:		Learning	g profile:		Spe	ciality:	
completed	Full-time			PRACTI	CAL				
mp	Year/ semes	ter:		Module,	/ course statu	s:	Mod	dule/ course l	anguage:
	2/3			mandat	ory		pol	ish/anglish	
To be	Type of								other
То	classes	lecture	le	ssons	lab	proje	ct	tutorial	(please
									specify)
	Course load	30			30				

Module/ course coordinator	dr inż. Jerzy Buriak
Lecturer	dr inż. Jerzy Buriak, dr inż. Robert Fidytek
Module/ course objectives	Providing information about the terminology in the field of databases; Learning the mapping of real-world objects to the logical structure of relational databases; database normalization; Learning practical use of the relational database management system and manipulation of data using SQL; Learning how to define data structures and database objects.
Entry requirements	

	LEARNING OUTCOME	
Nr	LEARNING OUTCOME DESCRIPTION	Learning outcome reference
1	Student uses the fundamental definitions of databases.	K_W05 K_W14
2	The keywords, operators and functions of the SQL language are implemented in data manipulation queries and in structure definition queries.	K_W05 K_W14
3	Student identifies the types of data and implements many kinds of SQL and DBMS functions, particularly: aggregate functions, mathematical functions, system functions, date and time functions, type conversion functions and text functions.	K_W05 K_W07 K_W14
4	Student is organizing the fields and tables of a relational database to minimize redundancy and dependency.	K_U07 K_U18

5	Student constructs SQL queries for the projection and selection of data from the database.	K_U18
6	Tables, sequences, views, triggers, functions and rules are created effectively by a student.	K_U18
7	Critically determines the scope of own knowledge and skills.	K_K01
8	Student declares the need for continuous training and professional development.	K_K01
9	Works in a group taking the different roles.	K_K04

CURRICULUM CONTENTS

Lecture

- 1. Introduction and fundamental definitions like: attribute, entity, database, database system, database management system, data types
- 2. Relational model of data: record of data, field, table, primary key, foreign key, relation, entity relationship diagram
- 3. Description of data models. Hierarchical and network model of data. Relational and object data model.
- 4. Algebra in relational database.
- 5. SQL language genesis, standard ANSI version of SQL, groups of SQL commands, general construction of SQL queries
- 6. SQL language DML commands: SELECT command and their clauses, operators, aggregation functions, practical examples.
- 7. SQL language DML commands: joins of tables, subqueries, practical examples
- 8. SQL language DML commands: INSERT, UPDATE and DELETE commands, practical examples
- 9. Introduction to data definition language (DDL group of commands in SQL)
- 10. Database normalization.
- 11. Introduction to postgreSQL database management system. Description of psql process
- 12. PostgreSQL data types. CREATE TABLE command with INHERITS and LIKE clauses
- 13. Various ALTER TABLE queries
- 14. Sequence parameters, SERIAL data type.
- 15. Date and time functions, time zones, format of the date, system functions.
- 16. Mathematical functions, system functions, type conversion functions and text functions.
- 17. CREATE VIEW command, CREATE RULE command.
- 18. Transactions.
- 19. Introduction to PL/pgSQL language. Example of triggers and trigger functions.

Tutorial

The purpose of the lab is the practical application of the knowledge acquired during the lecture, skills acquisition in data manipulation using SQL and in database normalization. Laboratory program includes:

- introduction to MS Access database and 'MS SQL Server' database;
- compose and execute SQL queries in the query editor in SQL Server Management Studio, covering issues such as selection, projection, formatting, aggregation functions, SQL Server built-in functions, grouping, joins, subquery, modification of data;
- definition of data source and a sample data migration;
- introduction to postgreSQL. Design of own database with tables, sequences, primary and foreign key constraints, views, triggers and functions.

During labs and own work in home the Microsoft IT Academy teaching materials are used. The "Querying SQL Server" course of Microsoft IT Academy is implemented.

	1. Eric Johnson, Joshua Jones A Developer's Guide for Data Modeling in SQL Server 2005 i 2008. Publication Date: July 4, 2008 ISBN-10: 0321497643 ISBN-13: 978-0321497642 Edition: 1 2. Judith S. Bowman, Sandra L. Emerson, Marcy Darnovsky: The
Basic literature	Practical SQL Handbook. ISBN: 83-204-2596-4, Published July 6th 2001 by Addison-Wesley Professional
Dasie incrature	3. C. J. Date. Database Design and Relational Theory O'Reilly Media.
	Released: April 2012. 4. J. D. Ulman. Database Systems: The Complete Book. 2ed Edition
	Published in 2008 by Prentice Hall
	5. "Querying SQL Server" course of Microsoft IT Academy
Additional literature	1. Richard Stones, Neil Matthew: Beginning Databases with
	PostgreSQL: From Novice to Professional. Publisher: Apress,
	ISBN: 1590594789, edition 2005

	1) lecture / lecture with multimedia presentation	
	2) exercises in auditorium with implementation of	the project
	method for practical tasks	
Teaching methods	3) work in group of students (case studies, solving	of the problems)
	4) exercises in computer laboratory	
	5) housework.	
	6) blended-learning	
	Assessment method	Learning outcome number
	Assessment method	number
Practical task – implementati	on in couples	01,04,09
Housework – SQL implemen	tation	02,03,05,06,07
Exam		01,08
Kolokwium		02,03,05,06
Form and terms of an	The components of the final grade of the course:	
exam	 50% of the evaluation is based on test results of 	theoretical
	issues cognized the lecture;	
	 50% of the assessment is the result of laboratory 	credit.
	The result of the laboratory credits include:	
	 20% of the test in designing the logical structure 	of standard
	models for the selected database problems;	
	 20% of the SQL test SQL; 	
	 10% homework and reports. 	
	Evaluation of the subject more than 72% entitle to rece	ive a certificate
	of completion of the Microsoft IT Academy course.	

STUDEN	T WORKLOAD
	Number of hours
Participation in lectures	30
Independent study of lecture topics	5
Participation in tutorials, labs, projects and	30
seminars	
Independent preparation for tutorials*	15
Preparation of projects/essays/etc.*	
Preparation/independent study for exams	5
Participation during consultation hours	5
Other	

TOTAL student workload in hours	90
Number of ECTS credit per course unit	3 ECTS
Number of ECTS credit associated with practical classes	65 2,2 ECTS
Number of ECTS for classes that require direct participation of professors	65 2,2 ECTS